According to a recent comprehensive United Nations (UN) 30-year retrospective study, the U.S. military’s Pacific Command (PACOM) region is one of the more, if not the most, disaster-prone areas in the world [1]. It encompasses 50% of the Earth’s surface and population and 10 of its largest militaries and is largely covered by water and sub-tropical coastal and mountainous remote interiors, with one of the Earth’s most massive shifting tectonic plates. It also hosts some of the most populous areas with rapid population growth, urbanization, and unrestrained expanding industry and increasingly crowded sea and land transit lines at high risk for large-scale manmade disasters [2, 3]. Not only are pure large-scale natural and manmade disasters likely, but substantial populations are concentrated astride areas that are predisposed to natural disasters with the potential for industrial disaster sequelae (e.g., earthquake/tsunami Fukushima nuclear meltdown). The Pacific region is extremely active and volatile seismically, meteorologically, volcanically, geologically, and industrially, especially with recent climate changes [4]. Disasters of epic proportions are not matters of if, but when, where, what, and how best to respond [5].
The UN’s Pacific Disaster report [1–6] provided an epidemiology of past disasters in the Pacific area that can be a fair predictor of future events and likely provides a road map on how best to respond.
First, natural disasters in PACOM will be one or more of four types: flood, storm, earthquake/tsunami, and landslide. They will likely occur westward and at some distance from the U.S. in Southwestern Asia, Southeastern Asia, or Northwestern Asia, with the most prone to disasters being Fiji, the Solomon Islands, Tonga and Vanuatu, Bangladesh, Brunei/Darussalam, Indonesia–Malaysia, Cambodia, and the Philippines. Poorer nations and peoples without the means to respond effectively will be disadvantageously affected. Second, loss of life and injury will be highest in earthquakes/tsunamis, storms, and floods. Third, survivable injuries will be trauma, though the major medical event will be asphyxiation. Thus, the medical surgical specialties needed will be trauma surgeons, orthopedic surgeons, and neurosurgeons, as well as nursing staff and support equipment. Fourth, reducing the number of deaths means getting medical “boots on the ground” nearest the epicenter of disasters’ maximum kinetic energy before the injured there die of survivable injuries. The epicenters will be inland from coastlines, airports, and seaports. Fifth, though all nations in the region have a disaster response plan, research suggests initially a U.S. joint military response will be the only viable and capable mechanism for delivering needed medical treatment quickly [7]—though this does not preclude other nation’s from sending HA/DR teams too. Sixth, transportation routes for patients and access routes for supplies will be compromised and all resources will have to be imported.
Thus, a short-notice (< 24 h) self-contained, pre-positioned westward trauma operating room structure with medical personnel that can also accommodate routine care is needed for immediate deployment. This structure should be integrated and interoperable seamlessly with civilian disaster response.
Research shows, particularly for Pacific area disasters, that emergency medical disaster relief: (1) must be able to quickly (no later than 72 h max) move and be fully operable proximate to epicenters where the greatest kinetic energy of a disaster occurred, but the quicker the better, (2) consist primarily of acute trauma and routine medical treatment, behavioral healthcare, some OB/PEDs capability, and, if needed, (3) be able to stabilize and transfer patients to higher levels of care [8–12]. Disaster relief must be <72 h post-request (but the sooner the better) for help or it likely becomes part of the problem (e.g., “in the way” or “a bottleneck”) [13, 14] An evaluation of the Pakistan earthquake revealed that not 1 of the 43 field hospitals arrived early enough, and they created a traffic jam when they all finally arrived at the same time [15]. Furthermore, everyone failed to bring the right kind of capabilities at the right time, including the U.S. military. Though the consensus on the Nepal disaster is still in progress, it would appear the more recent HA/DR responses repeated similar errors as in the past but to a lesser degree [16–21]. If anything, the Nepal experiences support the notion that the ability to quickly transport essential medical equipment and healthcare personnel to the nation’s interior were crucial to providing critical medical treatment [19, 20].
Conclusion: Emergency relief needs to be appropriate, rapid/immediate, and adaptable to the changing situation and augment existing hospital systems [15, 22–25]. Given a disaster has not made requesting help impossible, emergency disaster relief must be solicited by the nation in which the disaster occurred. But after that request has been received, disaster relief must come almost immediately; therefore, military contingencies must be prepared in advance for on-call service [26–29].
These efforts must be adaptable/scalable (i.e., modular) to conform to the unfolding situation and interoperable with local practitioners and existing higher level health/hospital infrastructures still operable or regaining operability in the area/region [27, 28]. Even though local medical infrastructure will be compromised, many local skilled medical practitioners will be available [25].
Sixty-five percent of disaster patient care will occur in remote/field areas not near air or sea ports [22]. Additionally, despite where disasters occur, inland or coastland, local health agencies, clinics, and hospitals will initially be compromised and overwhelmed but will be rebuilding. So, what is needed is an immediate surge of support and resources for the interim [13, 14].
Medical events will include lacerations, contusions, blunt force trauma, fractures, internal injuries, punctures, burns, asphyxiations, amputations, and obstetric complications [11] and births [10, 13, 14, 23, 24, 27]. Wound cleaning and dressing constitutes the majority of needs. Fifteen to twenty percent of patients will be emergent surgical and the majority will require routine care [8, 14] There is minimal need for preventive medicine; immediate post-disaster risk of infectious disease epidemics is over-exaggerated, though there is a need for prudent preventive medicine monitoring [29]. Nevertheless, long-term post-disaster preventive medicine is important to strengthening partnerships and alliances, providing security, and demonstrating the U.S. resolve to protect its interests in the region [30, 31]. It should be seamlessly woven into a gentle follow-on post-disaster transition.
Humanitarian Assistance/Disaster Relief (HA/DR) is a cornerstone of the U.S. military’s Pacific strategy which: (1) focuses on strengthening alliances and partnerships, (2) provides assurance of U.S. security commitment to the region, and (3) effectively communicates the U.S. resolve to protect its interests and ensure that the region remains stable and secure [6, 7, 30, 31]. The U.S. military’s global health engagements in the region support security and stability by building the capacity of military and civilian health systems to respond to disasters and health emergencies at the local, national, regional, and global levels [32]. Undoubtedly, disasters can provoke instability in any region. Therefore, U.S. military personnel stationed in PACOM have the ability to forward presence and crisis respond in terms of an array of contingencies, including humanitarian and medical assistance in response to a disaster [33]. Though the number of U.S. military responses to disasters in the region has been relatively small (<6%), each service must have the capability to effect a rapid medical response.
The U.S. Army through the U.S. Army Pacific (USARPAC) has the potential and is experienced in far-forward deployment in rugged and remote areas where the epicenter of a disaster is most likely to have occurred and its impact felt, during a time when an affected nation’s infrastructure is compromised [30]. The Army previously has relied on a “going-in heavy” strategy of methodically cobbling together large-scale teams and Medical Emergency Units (MEUs) or Combat Support Hospitals (CASHs), which are extremely bulky, hard-to-transport, self-contained units with operating and recovery rooms and patient wards [6, 15, 30, 32, 33]. Despite recent rapid advances in lighter, more modern, sturdier, and more mobile medical facilities and technologies, to date, the Army, in particular, USARPAC, has not had any in its inventory in terms of rapid HA/DR response. The classic doctrine for military operations for war is the use of methodical overwhelming force at the point of a center of gravity [34–36].
However, HA/DR operations doctrine stipulates that the proper approach is rapid response and initially a minimal footprint aimed at providing assistance and respite establishing a foundation for possible augmentation until local infrastructure can become operational again [22–24]. Past HA/DR medical operations (e.g., Pakistan earthquake) were large, and therefore cumbersome, ineffective, and costly, and became part of the problem instead of remedying it [13, 14] Thus, because the U.S. Army Pacific has been tasked with planning and preparing for HA/DR emergency medical operations, it has been exploring and developing its own particular alternative version of “going-in light” or “Going Light” that is fully integrate-able with its sister services in Joint Forces operations—generic but adaptable according to the specific situation.
Therefore, given the importance of this matter in terms of U.S. strategic interests and PACOM mission accomplishment, the intent of this article is to provide a report on study efforts to formulate a course of action, specifically, a viable, realistic, effective, relevant, PACOM/USARPAC, light-weight, highly mobile, and adaptably modular Rapid Emergency Medical Response capability. In so doing, this report will focus on equipment and personnel issues and then touch on ancillary aspects for further consideration. Hopefully, this report will serve as one crucial step forward toward achieving this as a Joint Forces/USARPAC capability.